Some New Thiohalides of Molybdenum and Tungsten

By D. BRITNELL, G. W. A. FOWLES,* and R. MANDYCZEWSKY (Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 2AD)

Summary Synthetic methods are reported for four new thiohalides, MoSCl₃, WSCl₃, and WSX₄ (X=Cl,Br), whose physical properties indicate polymeric structures for the MSCl₃ compounds (with M-S-M bridging bonds), but the presence of terminal W=S bonds for WSX_4 .

ALTHOUGH transition-metal oxyhalides are well established, relatively little is known of analogous thiohalides. The only information concerning such compounds is sparse on characterisation and structural detail. Thus TiSCl₂ is described¹ as a thermally unstable solid, and the molybdenum and tungsten compounds MS₂Cl₂ are reported,² but not characterised. The niobium compounds NbS₂X₂ (X=Cl,Br), which are better established,³ contain S_2^{2-} units and Nb-Nb bonds rather than direct Nb-S bonds. We are making a comprehensive study of transition-metal thiohalides and their complexes and report the thiohalides $MoSCl_3$, $WSCl_3$, $WSCl_4$, and $WSBr_4$.

The compound WSCl₄ is obtained (70%) by the reaction of stoicheiometric quantities of WCl_6 and Sb_2S_3 ; the reaction is spontaneous and proceeds vigorously on gentle warming. $WSBr_4$ is prepared by the analogous reaction from WBr_6 . The thiochloride is obtained also in 100% yield from the reaction of either WCl_6 or WCl_5 with elemental sulphur at $120^\circ;$ even with an excess of sulphur, ${\rm WSCl}_4$ is the only thiochloride formed. The reaction of ${\rm Sb}_2{\rm S}_3$ at 150° with the pentachlorides MoCl₅ and WCl₅ gives the thiohalides MSCl₃. Attempts to obtain WSCl₃ by reduction of WSCl₄ with aluminium (cf. analogous reduction of $WOCl_4^4$) gives products contaminated with aluminium sulphide.

In moist air all the thiohalides are unstable and evolve H_2S and hydrogen halide. $WSCl_4$ (mp. 146°) sublimes readily under vacuum to yield diamagnetic dark ruby-red crystals; and dark green crystals of WSBr₄ are obtained at 180-200°. The trichlorides MOSCl₃ (greenish-black) and WSCl₃ (black) are involatile.

I.r. spectra (Table) show strong peaks at 569 cm⁻¹ and

Compound	μ (B.M.) at 293°	I.r. spectra (cm ⁻¹)
WSCl4	0	569s, 392sh, 355s, 306s, 285w.
WSBr₄	0	555s, 395w, 346w, 250m.
MoSCl ₃	0.75	383sh, 364m, 320m, 271w.
WSCl ₃	0.54	373s, 334sh, 298w.

 555 cm^{-1} for WSCl₄ and WSBr₄ respectively, which we assign to terminal W=S bonds. Peaks in the range 400-510 cm⁻¹ are assigned⁵ to metal-sulphur bonds for ionic transition metal-sulphur compounds. The absence of peaks above 383 cm^{-1} in the spectra of the MSCl₃ compounds indicate polymeric structures with M-S-M bridging bonds. Both the latter compounds are paramagnetic (Table), the low moments being similar to that found for WOCl_3 ($\mu = 0.50 \text{ B.M.}$);⁴ these low values may be attributed to interactions of electrons on adjacent metal atoms through a non-linear M-S-M system.

X-Ray powder data shows the $MSCl_3$ compounds to be isomorphous, although the patterns are quite different from those of the analogous oxychlorides.

(Received, April 1st, 1970; Com. 456.)

- ¹ P. Ehrlich and W. Siebert, Z. anorg. Chem., 1959, 301, 288.
- ² K. M. Sharma, S. K. Anand, R. K. Multani, and B. D. Jain, *Chem. and Ind.*, 1969, 1556. ³ H. Schäfer and W. Beckmann, Z. anorg. chem., 1966, 347, 225; H. G. von Schnering and W. Beckmann, *ibid.*, p. 231.
- ⁴ G. W. A. Fowles and J. L. Frost, Chem. Comm., 1966, 252.
- ⁵ A. Müller, O. Glemser, and E. Diemann, Z. analyt. Chem., 1968, 241, 136.